

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СИРИУС-ПЛК

Руководство пользователя

v1.0.4

1	Нач	ало работы	4
	1.1	Общий вид Сириус-ПЛК	4
	1.2	Подключение к контроллеру	4
	1.3	Работа с Сириус-ПЛК	5
2	Кон	фигурация контроллера	8
	2.1	Состояние контроллера	8
	2.2	Обзор данных	9
		2.2.1 Дискретные сигналы	10
		2.2.2 Целочисленные сигналы	11
		2.2.3 Вещественные сигналы	12
	2.3	Обзор уставок	13
	2.4	Журналы	13
	2.5	База данных	14
	2.6	Аналоговые в/в	15
	2.7	Дискретные в/в	16
	2.8	СОУ	17
	2.9	Порты Ethernet	18
	2.10	Последовательные порты	18
		2.10.1 Настройка драйвера МЭК 60870-5-101	19
		2.10.2 Настройка драйвера Modbus устройства	19
		2.10.3 Настройка драйвера Меркурий-230	20
		2.10.4 Настройка драйвера КЭС	20

2.11 Виртуальный порт (1-8)	20					
2.12 Слот расширения	21					
2.13 Алгоритмы	21					
2.13.1 Алгоритм управления кранами	23					
2.14 IEC60870-5-104 slave	24					
2.15 ModbusTCP slave	25					
2.16 MQTT сервер	26					
2.17 FTP сервер	26					
2.18 FTP клиент	27					
2.19 Telnet	28					
2.20 Синхронизация времени	29					
2.21 Калибровка аналоговых входов	30					
2.22 Коррекция часов	31					
2.22.1 Делитель	31					
2.22.2 Подстройка	32					
2.23 Система	32					
Лополнительно						
3.1 Обновление системного ПО (прошивка ПЛК)	33					

3

1.1 Общий вид Сириус-ПЛК

Общий вид рабочего окна Сириус-ПЛК показан на Рис. 1. В верхней части экрана располагаются поля ввода IP-адреса, логина/пароля, а также кнопки управления – Новая, Выгрузить, Загрузить, Открыть, Сохранить и Рестарт.

Рис. 1: Состояние контроллера

1.2 Подключение к контроллеру

Для соединения с контроллером Сириус-ПЛК использует протокол HTTP (порт 80). Контроллер должен быть подключен к Ethernet сети через разъемы E1, E2 на лицевой панели, или непосредственно к компьютеру через разъем USB. В поле **Адрес** необходимо ввести IP адрес того интерфейса, через который планируется произвести соединение с контроллером. Для Ethernet инерфейсов E1, E2 настройки сети можно посмотреть в **п. 2.9 Порты Ethernet**. По умолчанию IP адрес первого порта 192.168.100.100, IP адрес второго порта 172.16.100.100. Для USB интерфейса IP адрес контроллера всегда 192.168.7.1.

А Для подключения по USB требуется установить драйвер Rndis (см. **п. ??**).

В полях **Пользователь/Пароль** необходимо ввести данные, сохраненные в контроллере (см. пункт 2.23 «Система»). По умолчанию эти поля пустые.

1.3 Работа с Сириус-ПЛК

При работе с действующим объектом, рекомендуется вначале выгрузить актуальную конфигурацию из контроллера, и только потом делать необходимые изменения в конфигурации. Поэтому рекомендуемая схема при работе с конфигурацией следующая:

- 1. Выгрузка конфигурации из памяти контроллера;
- 2. Редактирование параметров конфигурации;
- 3. Загрузка отредактированной конфигурации в контроллер.

Назначение кнопок управления Сириус-ПЛК:

- Новая создать конфигурацию по умолчанию;
- Выгрузить выгрузить конфигурацию из контроллера;
- Загрузить загрузить конфигурацию в контроллер. Кнопка «Загрузить» подсвечивается красным, если данные были изменены после выгрузки из контроллера. После загрузки конфигурации, контроллер автоматически рестартует;
- Открыть открыть конфигурацию из локального файла;
- Сохранить сохранить конфигурацию в локальный файл;
- Рестарт перезагрузить контроллер.

Для выгрузки конфигурации из контроллера необходимо нажать кнопку **Выгрузить**. Если подключение к контроллеру (см. **п. 1.2**) выполнено правильно, то после выгрузки конфигурации появится соответствующее сообщение (см. Рис. 2). Аналогичное сообщение должно появиться и при успешной загрузке конфигурации в контроллер.

Память:					
Частота СРU:		Гц			
Напряжение питания 220В:		В			
Напряже Напряже Темпера: ОК					
Время в контроллере:					
Время в компьютере:	15:24:32 19/10/2018	Синхронизировать			

Рис. 2: Успешная выгрузка конфигурации

После выгрузки конфигурации из контроллера можно приступать к ее редактированию. Конфигурация для удобства разбита на список меню, в каждом из которых настраивается определенный компонент контроллера. Список меню расположен слева, для перехода в нужное меню, нужно нажать на соответствующий элемент списка, см. Рис. 3. Cla

Состояние контроллера
Обзор данных
Обзор уставок
Журналы
База данных
Аналоговые в/в
Дискретные в/в
СОУ
Порты Ethernet
Последовательный порт 1
Последовательный порт 2
Виртуальный порт 1
Виртуальный порт 2
Виртуальный порт 3
Виртуальный порт 4
Виртуальный порт 5
Виртуальный порт б
Виртуальный порт 7
Виртуальный порт 8
Слот расширения 1
Слот расширения 2
Алгоритмы
IEC60870-5-104 слейв
ModbusTCP слейв
МQТТ Сервер
FTP сервер
FTP клиент
Telnet
Синхронизация времени
Калибровка аналоговых входов
Коррекция часов
Система

Рис. 3: Список меню конфигуратора

2.1 Состояние контроллера

В меню **Состояние контроллера** отображается общая информация об устройстве (см. Рис. 4). Для загрузки данных необходимо нажать кнопку **Обновить**. Если отметить галочкой пункт **Автообновление**, информация о состоянии контроллера будет постоянно обновляться раз в секунду. В верхней части экрана отображается информация о программном и аппаратном обеспечении, далее показана информация о текущеим состоянии микроконтроллера.

Состояние контроллера

Обновить 🗹 Автообновление								
Версия ПО: 1.1.5 ВНАР: VNAR.4264 Идентификатор: 4E.00.50.00	69.210).0E.51.37.34.34.37.31.32	Версия конфигурации: 0.12.0 Дата загрузки конфигурации: 03.07.2020, 17:14:46						
Память: total 655360 bytes, fr	ee 520348 bytes in 4 free blo	ocks (avge size 130087)						
Частота СРU:	168000000	Гц						
Входное питание питание:	19.718750	В						
Напряжение батарейки:	3.075000	В						
Температура:	36.375000	c						
Время в контроллере:	12:49:13 20/7/2020							
Время в компьютере:	12:49:13 20/7/2020	Синхронизировать						
GSM: Сигнал: 0 dBm Ответ модема: ☞ SIM-карта: ☞ GPRS: ☞ Адрес: 0.0.0.0 <i>Модем:</i>								
Слоты расширения: Слот расширения 1: Слот расширения 2:	D18/D08							

Ниже отображается статус GSM модема и слотов расширения. Название платы расширения отобразится в списке Слоты расширения, если контроллер определил

плату расширения, и при этом её тип соответствует конфигурации (см. меню 2.12 Слот расширения).

В этом же меню можно произвести синхронизацию времени вручную путем нажатия кнопки Синхронизировать:

Время в контроллере: Время в компьютере:	0:7:8 1/1/2000 15:36:20 19/10/2018	Синхронизировать
Рис.	5: Время до синхрон	изации
Время в контроллере:	15:36:39 19/10/2018	
Время в компьютере:	15:36:39 19/10/2018	Синхронизировать

Рис. 6: Время после синхронизации

2.2 Обзор данных

В этом меню показана база данных сигналов. Здесь производится мониторинг входов и управление выходами.

Обзор данных									
Обновить Автообновление									
Дискретная команда:	Тест ТУ (3000)	Вкл.	Выкл.						
Целочисленная команда:		•		Установить					
Вещественная команда:		•		Установить					

Рис. 7: Дискретные и аналоговые выходы

- Дискретная команда выдать дискретную команду. В выпадающем меню производится выбор команды. Выдача команды производится кнопками Вкл, Выкл.
- Целочисленная команда выдать целочисленную команду. В выпадающем меню производится выбор команды. Выдача команды производится кнопкой Установить
- Вещественная команда выдать вещественную команду. В выпадающем меню производится выбор команды. Выдача команды производится кнопкой Установить. Десятичный разделитель задаваемого значения – точка.

Ниже в базе данных в виде таблицы представлена база сигналов контроллера. При установленной галочке **Автообновление** информация обновляется в фоне раз в секунду. В таблице имеются следующие колонки:

- Адрес адрес сигнала в базе данных;
- Наименование наименование сигнала;
- Искл. (настраиваемое) исключение сигнала из обмена по протоколам связи;
- Значение значение сигнала в зависимости от его типа;
- Качество качество сигнала по стандартам IEC60870-5-101 и IEC60870-5-104;
- Устройство наименование внешнего устройства источника сигнала
- Порт порт контроллера подключения внешнего устройства источника сигнала;
- Период (настраиваемое) период отправки сигнала по протоколам связи независимо от его изменения и настройки дельты;
- Дельта (настраиваемое) величина минимального изменения сигнала, при которой производится его отправка по каналам связи и запись события во внутреннюю базу данных;
- Биение (настраиваемое) значение, на величину которого изменяется отправляемый по каналам связи сигнал в случае его неизменности с момента последней отправки.

2.2.1 Дискретные сигналы

На Рис. 8 представлена таблица дискретных сигналов контроллера:

Дискретные данные									
Адрес Наименование Искл. Значение Качество Устройство Порт Пе									
1000	Аппаратная ошибка		0	OK			0		
1001	Ошибка загрузки конфигурации		0	ок			0		
1002	Ошибка файловой системы		0	ок			0		
1003	Неисправность батарейки		0	ок			0		
1004	Время не синхронизированно		0	ок			0		
1005	Тест ТУ выполнен		0	OK			0		
1006	Ошибка модуля слота расширения 1		0	ок			0		
1007	Ошибка модуля слота расширения 2		0	ок			0		
1008	DI 1		0	OK			0		
1009	DI 2		0	ок			0		

Рис. 8: Дискретные сигналы

- Аппаратная ошибка наличие аппаратных ошибок при запуске контроллера;
- Ошибка загрузки конфигурации устанавливается при несовместимости версий конфигуратора и ПО контроллера, либо при ошибках загрузки и выгрузки конфигурации;
- Ошибка файловой системы устанавливается, если произошли ошибки при работе с файловой системой во время записи журналов, ведения логов, буферизации параметров и т.д.;
- Неисправность батарейки отсутствие батарейки/низкий заряд/некорректное значение напряжения;
- Время не синхронизировано время контроллера не синхронизировано;
- Тест ТУ выполнен логический тестовый сигнал TC;
- Ошибка модуля слота расширения 1 устанавливается при несоответствии модуля расширения №1 установленного в контроллере и указанного в конфигурации;
- Ошибка модуля слота расширения 2 устанавливается при несоответствии модуля расширения №2 установленного в контроллере и указанного в конфигурации;

Первые восемь сигналов одинаковы для всех аппаратных конфигураций контроллера. Сигналы, которые идут после восьмого зависят от аппаратой конфигурации, например далее может идти 16 физических сигналов TC, а потом сигналы алгоритмов.

2.2.2 Целочисленные сигналы

На Рис. 9 представлены целочисленные параметры контроллера.

Целочисленные данные									
Адрес	Наименование	Искл.	Значение	Качество	Устройство	Порт	Период (мс)	Дельта	Биение
2000	Температура контроллера		4063	ок			0	0	0
2001	Напряжение часовой батарейки		3105	ок			0	0	0
2002	Основное питание		2958	OK			0	0	0
2003	Режим работы		0	OK			0	0	0
2004	Версия ПО		0	OK			0	0	0
2005	Резерв		0	OK			0	0	0
2006	Резерв		0	OK			0	0	0
2007	Резерв		0	OK			0	0	0
2008	AI 1		-88	OK			0	0	0
2009	AI 2		82	OK			0	0	0
2010	AI 3		20	OK			0	0	0
2011	AI 4		-82	OK			0	0	0
2012	AI 5		-104	ок			0	0	0
2013	AI 6		6	ок			0	0	0
2014	AI 7		-68	ок			0	0	0
2015	AI 8		108	OK			0	0	0

Рис. 9: Целочисленные данные

- Температура контроллера темепратура, измеряемая на плате контроллера.
- Напряжение часовой батарейки напряжение часовой батарейки.
- Основное питание напряжение входного питания контроллера.

Дельты целочисленных сигналов могут быть сконфигурированы как уставки с помощью чекбоксов (квадратов, расположенных справа от полей ввода значений параметров). Чтобы установить или сбросить чекбокс, необходимо нажать на квадрат. Сброшенный чекбокс имеет серый цвет, установленный чекбокс оранжевого цвета. Если чекбокс уставки включен, уставка добавится в базу данных контроллера и отобразится в меню 2.3 Обзор уставок.

2.2.3 Вещественные сигналы

	На Рис	 10 представлени 	ы вещественные г	тараметры ког	нтроллера.
--	--------	-------------------------------------	------------------	---------------	------------

			Be	щественнь	іе данные					
Адрес	Наименование	Искл.	Значение	Качество	Устройство Порт	Период (мс)	Дель	та	Биение	
4000	Температура контроллера		35.375	ок		0	0.5		0	
4001	Напряжение часовой батарейки, Е	3	3.097	ок		0	0.01		0	
4002	Основное питание		19.617188	ок		0	0.5		0	
4003	Резерв		0	ок		0	0		0	
4004	Резерв		0	ок		0	0		0	
4005	Резерв		0	ок		0	0		0	
4006	Резерв		0	ок		0	0		0	
4007	Резерв		0	ок		0	0		0	
4008	AI 1		0	ок		0	0		0	
4009	AI 2		0.000626	ок		0	0		0	

Рис. 10: Вещественные данные

Дельты вещественных сигналов могут быть сконфигурированы как уставки с помощью чекбоксов (квадратов, расположенных справа от полей воода значений параметров). Чтобы установить или сбросить чекбокс, необходимо нажать на квадрат. Сброшенный чекбокс имеет серый цвет, установленный чекбокс оранжевого цвета. Если чекбокс уставки включен, уставка добавится в базу данных контроллера и отобразится в меню 2.3 Обзор уставок.

2.3 Обзор уставок

В меню обзора уставок в табличном виде выведены все параметры, которые сконфигурированы как уставки. Таблица, как и в меню обзора данных разбита по типам данных – дискретные, целочисленные и вещественные, см. Рис. 11.

Целочис	пенная команда: Дельта - Al 1 (11000)			T		Установить
Веществ	енная команда: Дельта - Температура конт	роллера (1200	00)	• • • • • • • • • • • • • • • • • • •		Установить
		Дискре	тные даннь	ле		
Адрес	Наименование	Значение	Качество	Устройство	Порт	Команда
		Целочис.	ленные дан	ные		
Адрес	Наименование	Значение	Качество	Устройство	Порт	Команда
8000	Дельта - AI 1	100	OK	•	•	11000
8001	Дельта - AI 2	100	OK			11001
8002	Дельта - АІ 3	100	OK			11002
8003	Дельта - AI 4	100	OK			11003
8004	Дельта - AI 5	100	OK			11004
8005	Дельта - AI 6	100	OK			11005
8006	Дельта - AI 7	100	OK			11006
8007	Дельта - AI 8	100	OK			11007
8008	Время перестановки	10	OK	алгоритм №1 Управление кранами	Кран 1	11008
8009	Время дожима	2	OK	алгоритм №1 Управление кранами	Кран 1	11009
8010	Время перестановки	10	OK	алгоритм №1 Управление кранами	Кран 2	11010
8011	Время дожима	2	ок	алгоритм №1 Управление кранами	Кран 2	11011
		Bomocra				
		веществ	спире дани	ibic		
Адрес	Наименование	Значение	Качество	Устройство	Порт	Команда
10000	Дельта - Температура контроллера	0.5	OK			12000
10001	Дельта - Напряжение часовой батарейки, В	0.01	OK			12001
10002	Дельта - Основное питание	0.5	OK			12002

Рис. 11: Меню обзора уставок

2.4 Журналы

В данном меню настраивается журналирование событий и отладочной информации контроллера.

Запуск:	
команды оператора:	•
Размер файлов (байт):	61440
Количество файлов:	10
Отладочная инфо	рмация:
Уровень вывода в фай	іл: Ошибки 🔻
Уровень вывода в teln	et: Ошибки 🔻
Размер файла (байт): Количество файлов:	32768

Настройка журналов событий:

- Запуск включить журналы;
- Команды оператора разрешить запись команд оператора в журналы;
- Размер файлов/количество файлов настройка объема журналов.

Отладочная информация:

- Уровень вывода в файл/telnet тип сообщений, разрешенных к выводу. На уровне «Ошибки» выводятся только ошибки. На уровне «Сообщения» выводятся и ошибки, и информационные сообщения. На уровне «Отладка» выводятся все три типа сообщений, в том числе отладочная низкоуровневая информация.
- Размер файлов/количество файлов настройка максимального объема журналов.

2.5 База данных

Начальные адреса/Начальные адреса уставок – Настройка диапазонов адресов для всех типов данных. Диапазоны не должны пересекаться.

Размер буфера событий – настройка количества событий, по достижению которых буфер событий записывается в файл.

Кэширование буфера событий – количество файлов кольцевого буффера событий. Если задано значение 0, кэширование отключено. Также кэширование будет отключено, если не задан адрес основного клиента в меню 2.14 IEC6087 5 104 слейв.

Настройка базы данных

Начальные адреса:	
Дискретные данные:	1000
Целочисленные данные:	2000
Дискретные команды:	3000
Вещественные данные:	4000
Целочисленные команды:	5000
Вещественные команды:	6000
Начальные адреса уставок:	
Дискретные данные:	7000
Целочисленные данные:	8000
Дискретные команды:	9000
Вещественные данные:	10000
Целочисленные команды:	11000
Вещественные команды:	12000
Размер буфера событий:	
Дискретные данные:	200
Целочисленные данные:	200
Вещественные данные:	200
Кэширование буфера событий:	
Количество файлов (0-отключить):	100

2.6 Аналоговые в/в

Настро	Настройка аналоговых в/в								
Входы:									
Фильтр (от Период опр	счеты): 4 v юса (мс): 100]							
Тип:	Вход 1 +- 20 мА 🗸	Вход 2 +- 20 мА 🗸	Вход 3 [+- 20 мА ✔	Вход 4 +- 20 мА 🗸	Вход 5 +- 20 мА 🗸	Вход 6 +- 20 мА 🗸	Вход 7 +- 20 мА 🗸	Вход 8 +- 20 мА 🗸	
Предельны	е значения диаппазона (в	юд):							
минимум:	-32000	-32000	-32000	-32000	-32000	-32000	-32000	-32000	
максимум:	32000	32000	32000	32000	32000	32000	32000	32000	
Масштабир	ование в вещественные	данные:							
минимум:	-20	-20	-20	-20	-20	-20	-20	-20	
максимум:	20	20	20	20	20	20	20	20	
Питание датчиков:									
выход:	Нет 🗸	Нет 🗸	Нет 🗸	Нет	Иет ч	Нет 🗸	Нет 🗸	Нет	~
время (мс):	Нет	0	0	0	0	0	0	0	
	3000 Tect TV								
	3001 Постоянный опрос								

Рис. 14: Настройка аналоговых входов/выходов

Входы:

 Фильтр (отсчеты) – фильтр входных аналоговых сигналов с усреднением заданного числа отсчетов.

- Тип выбор типа аналогового входа (по току или по напряжению) и диапазона значений.
- Предельные значения диапазона значения в кодах АЦП, которые задают диапазон достоверности сигнала.
- Масштабирование в вещественные данные настройка масштаба при переводе в вещественный тип данных аналогового входа.
- Питание датчиков настройка способа питания датчиков (по команде от ПЛК или постоянный опрос) и времени, на которое запитывается датчик.

2.7 Дискретные в/в

Настройка дискретных в/в				
Фильтр дискретных входов (мс): 500				
Фильтр счетных входов	(х100 мкс): 10			
Счетные входы:				
Включить:				
Отправка часовая:				
Отправка дневная:				
Расчетный час:	0	0	0	0
Коэффициент пересчёта	: 1	1	1	1

Рис. 15: Настройка дискретных входов/выходов

- Фильтр дискретных входов/Фильтр счетных входов настройка защиты от дребезга.
- Период опроса/Выход питания/Время включения настройка способа опроса дискретных сигналов (по команде от ПЛК или постоянный опрос) и времени, на которое включается опрос.
- Включить включение/выключение режима счетного входа.
- Отправка часовая Включить/выключить отправку значения счетного входа каждый час.
- Отправка дневная Включить/выключить отправку значения счетного входа каждый день в расчетный час.
- Расчетный час установка часа, в который происходит отправка значения счетного входа, если установлена галочка «Отправка дневная». Значение целочисленное.

 Коэффициент пересчета – масштабирование счетных входов в физическую величину. Десятичный разделитель – точка.

2.8 СОУ

Настройка СОУ			
Включить:			
Сервер:			
Интерфейс:	Любой 🗸		
Порт:	4007		
Количество клиентов:	2		
Параметры СОУ:			
Количество массивов:	20		
Количество сэмплов:	300		
Количество сигналов:	4		
Вход 1	Вход 2	Вход 3	Вход 4
минимум: 100	200	300	400
максимум: 12200	1200	1300	1400

Рис. 16: Настройка СОУ

- Включить включить/выключить работу СОУ.
- Интерфейс выбор интерфейса, по которому производится обмен данными СОУ.
 Можно выбрать следующие интерфейсы: Ethernet, GSM, USB.
- Порт IP-порт, устанавливается в соответствии с настройкой порта клиентов.
- Количество клиентов количество клиентов, которые могут подключиться к устройству (1 или 2).
- Количество массивов число минутных срезов данных, хранящихся в контроллере.
- Количество сигналов число датчиков, подключенных к ПЛК, для которых обрабатываются данные для СОУ;
- минимум/максимум масштабирование входов в физическую величину. Десятичный разделитель – точка.

2.9 Порты Ethernet

Настройка портов Ethernet			
	Порт eth0		Порт eth1
Адрес:	172.18.32.60	Адрес:	172.20.2.34
Маска:	255.255.0.0	Маска:	255.255.0.0
Шлюз:	172.18.0.1	Шлюз:	172.20.0.1
DNS 1:	0.0.0	DNS 1:	0.0.0.0
DNS 2:	0.0.0	DNS 2:	0.0.0

Рис. 17: Настройка ethernet-портов

- **Адрес** IP адрес Ethernet порта.
- Маска маска подсети.
- Шлюз шлюз.
- DNS 1/DNS 2 адреса серверов имен.

2.10 Последовательные порты

Последовательный порт 1		
Драйвер:	Нет	¥
Скорость:	57600 🔻	
Чётность:	None 🔻	
Стоп бит:	1 🔻	

Рис. 18: Настройка последовательного порта

- Драйвер выбор драйвера устройства последовательного порта. Можно установить следующие драйверы: МЭК 60870-5-101, Modbus устройства, Меркурий-230, ДГС-ЭРИС-210, КЭС.
- Скорость, четность, стоп бит параметры последовательного порта.

При выборе конкретного драйвера под настройками порта появляется меню с настройками драйвера.

2.10.1 Настройка драйвера МЭК 60870-5-101

Настройки IEC-101:		
ASDU:	1	
link:	1	
Message size:	255	
GI off:		

- ASDU ASDU устройства (2 байта)
- link Link адрес (1 байт)
- Message size Максимальный размер сообщения
- GI off отключение General interrogation

2.10.2 Настройка драйвера Modbus устройства

Настройки modbus устройств:				
Время ожидания ответа (мс): 5000				
Ко	Количество повторов: 3			
Па	уза между опросами (мс)	: 1000		
№	Тип	Адрес		
1	Нет 🔻	1		
2	Нет	2		
3	KC CT	3		
_		<u> </u>		
4	KVITUTU3	4		
5	Controlotron 1010 PVDN Fluxus F704 PRRU	5		
6	Нет 🔻	6		

Рис. 20: Настройка драйвера Modbus устройства

2.10.3 Настройка драйвера Меркурий-230

Настр	ойки М	Іеркурий-230:			
Время ожидания ответа (мс):		1000			
Количество повторов:		3			
Пауза между опросами (мс):		60000			
№Вкл	ючить	Адрес		Пароль	
№Вкл 1	ючить.	Адрес 1		Пароль	
№ Вкл 1 2	ючить.	Адрес 1 2		Пароль	
№Вкл 1 2 3	ючить — — — — — — — — — — — — — — — — — — —	Адрес 1 2 3		Пароль	

Рис. 21: Настройка драйвера Меркурий-230

2.10.4 Настройка драйвера КЭС

Контроллер солнечной энергии:			
Время ожидания ответа (мс):	5000		
Количество повторов:	3		
Период опроса (мс):	1000		

Рис. 22: Настройка драйвера КЭС

2.11 Виртуальный порт (1-8)

Виртуальный порт 1		
IP-адрес:	0.0.0.0	
Порт:	4001	
Драйвеј	р: Modbus устройства ∽	

Рис. 23: Виртуальный порт

- **IP-Адрес** IP адрес виртуального порта.
- Порт IP-порт виртуального порта.

 Драйвер – выбор драйвера устройства виртуального порта. Можно установить следующие драйверы: МЭК 60870-5-101, Modbus устройства, Меркурий-230, ДГС-ЭРИС-210, КЭС.

2.12 Слот расширения

Плата расширения 2				
Тип платы:	DI10/DO6 🔻			
	Нет			
	DI10/DO6			

Рис. 24: Слот расширения

В данном меню выбирается тип платы расширения для слотов 1, 2. Выбор осуществляется с помощью выпадающего списка. После загрузки конфигурации в контроллер при старте сравнивается выбранный тип с типом платы, фактически установленной в слот. Если типы не совпадают, или плата не обнаружена, контроллер выдаст ошибку. Тип платы, фактически установленной в слот, отображается в меню п. 2.1.

2.13 Алгоритмы

Алгоритмы			
№	Алгоритм	Вкл.	

Рис. 25: Меню алгоритмов по умолчанию

В даном меню можно добавить в конфигурацию требуемые алгоритмы. По умолчанию список алгоритмов пуст, см. Рис. 25. Чтобы добавить алгоритм, необходимо нажать зеленую кнопку с плюсом, после чего в список алгоритмов добавится новый алгоритм, как показано на Рис. 26. Тип алгоритма можно выбрать в выпадающем списке. После добавления алгоритма в список, вместо зеленой кнопки добавления появится красная кнопка удаления, с помощью которой алгоритм можно удалить. После добавления алгоритма и задания его параметров необходимо загрузить конфигурацию в контроллер. Алгоритм, добавленный в список, начнет работать после старта контроллера, если в списке алгоритмов напротив него установлена галочка «Вкл.».

Алго	ритмы			
№	Алгоритм	Вкл.	_	
1	Управление кранами 🔻	1	-	
2	Управление кранами 🔻			
3	Управление кранами управление кранами	v		
			+	

Рис. 26: Добавление алгоритма

Под списком алгоритмов отображается меню с настройкой выбранного алгоритма, см.Рис. 27.

Алгоритм №2 Управление кранами:				
Готовность к ТУ (DI):	0			
Команда подготовки (DO):	0			
Кран № 	+			

Рис. 27: Меню настройки алгоритма

2.13.1 Алгоритм управления кранами

	-
Готовность к ТУ (DI):	1024
Команда подготовки (DO): 3005
Кран №	
	_
Кран 1	-
Кран 2	-
	+
Кран №2:	
Кран №2: Инверсный концевик:	
Кран №2: Инверсный концевик: Время перестановки (с):	✓
Кран №2: Инверсный концевик: Время перестановки (с): Время дожима (с):	✓ 40 3
Кран №2: Инверсный концевик: Время перестановки (с): Время дожима (с): Кран открыть (DO):	 ✓ 40 3 3003
Кран №2: Инверсный концевик: Время перестановки (с): Время дожима (с): Кран открыть (DO): Кран закрыть (DO):	40 3 3003 3004
Кран №2: Инверсный концевик: Время перестановки (с): Время дожима (с): Кран открыть (DO): Кран закрыть (DO): Кран открыт (DI):	 ✓ 40 3 3003 3004 1020
Кран №2: Инверсный концевик: Время перестановки (с): Время дожима (с): Кран открыть (DO): Кран закрыть (DO): Кран открыт (DI): Кран закрыт (DI):	 ✓ 40 3 3003 3004 1020 1021
Кран №2: Инверсный концевик: Время перестановки (с): Время дожима (с): Кран открыть (DO): Кран закрыть (DO): Кран открыт (DI): Кран закрыт (DI): Соленоид открытия (DI):	 ✓ 40 3 3003 3004 1020 1021 1022

Алгоритм №1 Управление кранами:

Рис. 28: Настройка алгоритма управления кранами

Добавление кранов в алгоритм осуществляется с помощью зеленой кнопки с плюсом. Далее для каждого выбранного добавленного крана необходимо задать все параметры – адреса сигналов, а также время перестановки и время дожима. Параметры время перестановки и время дожима могут быть сконфигурированы как уставки с помощью чекбоксов (квадратов, расположенных справа от полей ввода значений параметров). Чтобы установить или сбросить чекбокс, необходимо нажать на квадрат. Сброшенный чекбокс имеет серый цвет, установленный чекбокс оранжевого цвета. Если чекбокс уставки включен, уставка добавится в базу данных контроллера и отобразится в меню 2.3 Обзор уставок.

2.14 IEC60870-5-104 slave

Настройка IEC60870-5-104 слейв

Включить:	
Адрес ASDU:	1
Интерфейс:	Любой 🔻
Порт:	2404
Длинна сообщения (байт):	255
Количество клиентов:	2
Адрес основного клиента:	0.0.0
T1 (c):	30
Исключить данные из общих опросов:	

Рис. 29: Настройка IEC 104

- Включить включить/выключить работу по IEC60870-5-104.
- Адрес ASDU адрес станции.
- Интерфейс можно выбрать конкретный сетевой интерфейс для работы с данным протоколом, либо выбрать «Любой», в этом случае работа будет осуществляться сразу по всем интерфейсам.
- Порт устанавливается в соответствии с настройкой порта мастера.
- Количество клиентов количество клиентов, которые могут одновременно подключиться к устройству.
- Адрес основного клиента если задан адрес основного клиента, то будет включен механизм кеширования событий при условии, что задан ненулевой размер буфера событий в меню 2.5 База данных.

адрес клиента, которому будут высылаться события, буферизированные при отсутствии связи. Если оставлен адрес по умолчанию **0.0.0.0**, то основной клиент считается не заданным, и буферизация работать не будет, даже если ее настроить в меню «База данных», см. **раздел 2.5**.

2.15 ModbusTCP slave

Hастройка ModbusTCP слейв								
Включить:								
Адрес modbus:	1							
Интерфейс:	Любой	~						
Порт:	5005							
Количество клиентов:	2							
Время жизни клиентов (мс):	30000							
Перенаправить как Modbus-RTU:	Нет		~					
Таблица смещений адресов	Таблица смешений адресов							
Адрес Coils Disc Inpu	rete ts	Holding Registers	Input Registers					
1 1000 200	0	3000	4000 -					
			+					

Рис. 30: Настройка ModbusTCP slave

- Включить включить/выключить paбoty ModbusTCP slave.
- **Адрес modbus** адрес станции.
- Интерфейс можно выбрать конкретный сетевой интерфейс для работы с данным протоколом, либо выбрать «Любой», в этом случае работа будет осуществляться сразу по всем интерфейсам.
- Порт устанавливается порт для ТСР-соединения.
- Количество клиентов количество клиентов, которые могут одновременно подключиться к устройству.
- Время жизни клиентов (мс) время, после которого происходит отключение Modbus-мастера от ПЛК.
- Перенаправить как Modbus-RTU преобразование ModbusTCP в ModbusRTU в один из последовательных портов ПЛК.

В **Таблице смещения адресов** указываются смещения относительно начальных адресов, указанных в разделе **меню 2.5 База данных**. Смещение возможно в положительную и отрицательную сторону.

2.16 MQTT сервер

MQTT			
Включить	. 🗆		
Интерфей	іс: Любой 🗸		
Порт:	1883		
Логин:			
Пароль:			
№ K.	лиент	Вкл.	
			+

Рис. 31: Настройка MQTT-сервера

- Включить включить/выключить работу MQTT-сервера.
- Интерфейс можно выбрать конкретный сетевой интерфейс для работы с данным протоколом, либо выбрать «Любой», в этом случае работа будет осуществляться сразу по всем интерфейсам.
- Порт устанавливается порт для ТСР-соединения.
- Логин/Пароль устанавливается Логин и Пароль для MQTT-сервера.

2.17 FTP сервер

Настройка FTP сервера

Включить:	
Интерфейс:	Любой 🔻
Порт:	21
Администратор:	
Логин:	admin
Пароль:	admin
Пользователь:	
Логин:	user
Пароль:	user

Рис. 32: Настройка FTP-сервера

Пример настройки подключения к контроллеру с IP-адресом 172.18.100.100 через FTP:

Протокол:	FTP - Протокол передачи файлов		\sim
Хост:	172.18.100.100	Порт: 21	
Шифрование:	Использовать явный FTP через TLS если доступен		\sim
Тип входа:	Нормальный		~
Пользователь:	admin		
Пароль:	•••••		

Рис. 33: Параметры подключения по FTP

Имя файла		Размер	Тип файла	Последнее измене	Права
	<mark></mark>				
	events		Папка с ф	14.09.2018	drw-rw-rw-
	FIRMWARE		Папка с ф	15.12.2017	drw-rw-rw-
	System Volume Information		Папка с ф	19.10.2018	drw-rw-rw-
	📔 command.log	0	Файл "LOG"	14.09.2018	-rw-rw-rw-
	🗃 syslog.log	4 884	Файл "LOG"	01.01.2000	-rw-rw-rw-
	🗃 syslog00.log	32 842	Файл "LOG"	01.01.2000	-rw-rw-rw-
1					

Рис. 34: Файловая система контроллера

2.18 FTP клиент

Позволяет отправлять параметры на FTP сервер.

Настройка FTP клиента

Рис. 35: Настройка FTP-клиента

2.19 Telnet

Telnet используется для диагностики. С его помощью можно оперативно выгрузить отладочную информацию.

Включить:		
Интерфейс:	Любой 🔻	
Порт:	23	
Логин:	admin	
Пароль:	admin	

Рис. 36: Настройка Telnet

Пример подключения по Telnet с помощью программы TTY:

Basic options for your KiTTY session			
Specify the destination you want to connect to			
Host Name (or IP address)	Port		
172.18.100.100	23		
Connection type: Raw Telnet Rlogin SSH Serial Cygterm			

Рис. 37: Параметры Telnet подключения

	172.18.1	00.100 - KiTTY			_		×
1	ogin: ad	lmin					\sim
p	assword:						
1	ogs: ini	tialize.					
0	ALWAYS	[23.10.18	09:55:35]	logs: [23/10/18 09:55:35.750] 0 ms			
0	ALWAYS	[23.10.18	09:55:37]	Main: system starting			
2	TRACE	[23.10.18	09:55:37]	IEC870-5-104: initializing server			
2	TRACE	[23.10.18	09:55:37]	IEC870-5-104: starting server			
1	INFO	[23.10.18	09:55:37]	Telnet: Initializing Server			
1	INFO	[23.10.18	09:55:37]	Telnet: Starting Server			
1	INFO	[23.10.18	09:55:37]	Telnet: Log Level = 2			
1	INFO	[23.10.18	09:55:37]	<pre>FileLog: Level = 0, File Size = 32768,</pre>	Numbe	er = 5	
0	ALWAYS	[23.10.18	09:55:38]	Main: system started			
2	TRACE	[23.10.18	09:55:38]	USB: USBD: Init			
1	INFO	[23.10.18	09:57:32]	Telnet: Connection established - 172.18	3.32.9	99 por	t
56911							
1	INFO	[23.10.18	09:58:08]	ETH: Telnet server: Password verificati	ion su	iccess	

Рис. 38: Подключение по Telnet

2.20 Синхронизация времени

В этом меню производится настройка синхронизации часов контроллера.

Настройка синхронизации времени						
Основной источник:	GPS 🗸					
Часовой пояс:	0					
Период достоверности (с): 3600					
Максимальное расхождение (мс): 10000						
Настройка NTP	_					
Включить:						
Интерфейс:	Ethernet V					
Сервер 1:	88.147.254.232					
Сервер 2:	88.147.254.235					
Сервер 3:	88.147.254.234					
Сервер 4:	91.226.136.155					
Время опроса (мс):	20000					
Период подключения (с):	60					
Количество повторов:	0					

Рис. 39: Настройка NTP

- Основной источник выбор источника сигнала точного времени (NTP или GPS).
- Часовой пояс выбор часового пояса.
- Период достоверности период опроса источника точного времени.
- Максимальное расхождение допустимое расхождение времени контроллера и сигнала точного времени.
- Настройка NTP Настройка NTP-серверов.

2.21 Калибровка аналоговых входов

Калибровка аналоговых входов					
Вход: 1 т Тип: напряжение т					
Коэффициенты калибровки Kx:1.991 Sx:0					
Калибровать Сохранить					
Калибровка					
Задайте минимальное значение					
	Отмена ОК				

Рис. 40: Калибровка аналоговых выходов

Для калибровки аналогового входа необходимо задать номер входа и его тип в соответствующих выпадающих меню, нажать кнопку **Калибровать**, после чего следовать указаниям диалоговых окон – задать минимальное и максимальное значения диапазона. Для завершения калибровки нужно нажать кнопку **Сохранить**. При этом контроллер запишет новые значения в память и рестартует.

2.22 Коррекция часов

Коррекция часов		
Обновить	Записать	
Делитель: Подстройка:	0	

Рис. 41: Коррекция часов

Коррекция часов реального времени производится с помощью двух параметров:

- Делитель смещение для изменения делителя частоты тактирования часов. Минимальное значение -16382, максимальное значение 16383. Значение по умолчанию равно 0, что соответствует номинальному значению частоты тактирования.
- Подстройка смещение для тонкой подстройки скорости часов. Минимальное значение -31, максимальное значение 31. При значении, равном 0, подстройка выключена.

Делитель влияет на скорость хода часов гораздо сильнее, чем тонкая подстройка, поэтому при коррекции часов необходимо сначала максимально близко подобрать значение делителя при значении подстройки, равном 0, после чего подбирать значение подстройки при выбранном делителе.

Для изменения параметров коррекции часов необходимо вписать требуемые значения для делителя и подстройки в соответствующие поля и нажать кнопку «Записать». При этом значения запишутся в память часов. Далее необходимо перезагрузить контроллер, после чего эти параметры применятся. Кнопка «Обновить» выгружает текущие фактические значения.

2.22.1 Делитель

Значение данного параметра суммируется с делителем частоты тактирования часов. Значению 0 будет соответствовать номинальная частота тактирования. Положительное значение этого параметра будет увеличивать делитель частоты, и уменьшать частоту тактирования часов, отрицательное значение будет уменьшать делитель частоты и увеличивать частоту тактирования часов. Одна единица параметра изменяет отставание/ускорение часов на 2-3 мс за минуту.

2.22.2 Подстройка

Значение данного параметра напрямую корректирует скорость хода часов в узких пределах. Максимальное значение данной величины, равное 31, изменяет скорость хода часов примерно на 3 мс. Положительное значение увеличивает скорость хода часов, отрицательное значение уменьшает скорость хода часов.

2.23 Система

В данном меню можно задать логин и пароль для подключения к ПЛК при помощи Сириус-ПЛК. После загрузки конфигурации в контроллер новое подключение к нему может быть осуществлено уже только при вводе новых логина и пароля в поля **Поль-зователь** и **Пароль** главного экрана «Состояние контроллера».

3.1 Обновление системного ПО (прошивка ПЛК)

Для скачивания системного программного обеспечения (СПО) нужно зайти на страницу https://rlt.ru и скачать необходимый файл с расширением *.pak.

Установка/обновление СПО осуществляется путем копирования файла СПО с расширением *.pak в папку /FIRMWARE/.

Последовательность действий при обновлении СПО по USB:

- подключить ПЛК к компьютеру с помощью USB-кабеля;
- ПЛК должен отобразиться в системе как USB-накопитель;
- зайти в файловую систему контроллера и перейти в папку /FIRMWARE/;
- скопировать в данную папку новый файл СПО
- перезапустить ПЛК

Последовательность действий при обновлении СПО по Ethernet:

- Произвести соединение с контроллером по сети Ethernet;
- Подключиться по FTP к контроллеру Сателлит;
- Зайти в файловую систему контроллера и перейти в папку /FIRMWARE/;
- Скопировать в данную папку новый файл СПО.

Имя файла	Размер	Тип файла	Последнее изменение	
)				
BOOTCFG.TXT	267	Файл "ТХТ"	03.01.2000	
satellit-a_no_radio-3.2.6.pak.last	602 992	Файл "LAST"	27.09.2022	

Рис. 42: Папка FIRMWARE с файлом системного ПО

• СПО устройства можно изменить, не копируя новый файл, а просто изменив расширение одного из существующих файлов с *.pak.last на *.pak, откатив та-ким образом СПО на старую версию.